财联社5月14日电,据近期《自然·通讯》杂志报道,美国俄亥俄州立大学的研究人员使用机器学习工具创建了一个表现出混沌行为的电子电路的数字孪生模型。他们借此成功地预测了电子电路的行为并对其进行了控制。数字孪生模型系统足够紧凑,可以安装在一个廉价的计算机芯片上。该芯片能在没有连接互联网的情况下运行,并可以降低控制器功耗。为了验证这一理论,研究人员让新模型完成复杂的控制任务,并将其结果与以前的控制技术进行比较。结果表明,新方法与线性方法相比,实现了更高的准确度,且比以前的基于机器学习的控制器的计算复杂性显著降低。