当地时间1月27日,欧盟空间事务专员安德留斯·库比留斯在布鲁塞尔举行的一次会议上表示,欧盟政府卫星通信计划已于“上周”启动。该计划汇集了27个欧盟成员国政府拥有的卫星的现有通信能力。
通信系统对人造卫星来说至关重要,但其平均寿命仅有数年。这是因为太空充满着宇宙射线的“枪林弹雨”,会造成通信系统使用的半导体电子器件性能损伤。
为应对这一问题,复旦大学周鹏、马顺利团队成功研发“青鸟”原子层半导体抗辐射射频通信系统(以下简称“青鸟”系统),不仅将卫星通信系统的理论在轨寿命延长到271年,也把能耗降低到传统方案的五分之一,重量更是“瘦身”到原来的十分之一左右,并有望将人造卫星的使用年限由3年左右提升至20—30年。

“青鸟”系统使用的4英寸原子层半导体抗辐射射频通信芯片。图片来源:复旦大学
近期,“青鸟”系统依托“复旦一号”卫星平台进入太空,在国际上首次实现了二维电子器件与系统的“超长寿命”“超低功耗”实地在轨验证。北京时间1月29日凌晨,《自然》在线发表了该成果。
周鹏教授介绍,传统的半导体器件想要在太空中正常使用,要么增加半导体的部件,例如把原先的一个部件增加到十个,即使一个坏了,还有九个可以继续工作。要么就是给半导体加一个金属材质的保护壳,将宇宙射线的粒子尽可能挡在外面。但这两种方案都未能提升器件本身的抗辐射性能,不仅“治标不治本”,还会大幅增加重量、体积,为航天卫星“寸土寸金”且极其有限的载荷空间带来极大负担。
“青鸟”系统采用的原子层半导体巧妙地解决了这个问题。所谓原子层半导体,指的是将半导体原子在二维平面上进行排布,形成只有一个或几个原子厚度的单层膜。当宇宙射线的粒子射向这层膜时,就像光穿过一层超薄的玻璃,几乎不会影响到这层膜本身。这层只有0.68纳米厚度的膜不仅本身重量超轻,也无需增加备份部件或是厚重的防护壳,还具有高度节能的特性,为常常依赖太阳能或有限星载电池的太空任务提供更多的能源保障。
马顺利副教授介绍,通过“复旦一号”,“青鸟”系统在距地球约517公里的低地轨道上,通过了现实考验,揭示了该系统在真实宇宙辐射环境下长期工作的稳定性与可靠性。“在轨运行9个月后,传输数据的错误率仍低于一亿分之一。”马顺利说。