①道通科技及全资子公司与某头部创新机器人公司签订《战略合作协议》,确认未来双方将在联合研发和推广空地一体集群智慧解决方案上展开合作,知情人士透露,头部机器人公司为宇树科技; ②董事长李红京表示,将'空地一体集群智慧解决方案'业务培育为第三发展曲线,首先应用在能源、交通等领域。
《科创板日报》9月9日讯(记者 黄心怡)在上海举行的2023 inclusion·外滩大会,吸引了多家金融大模型厂商参会,探讨大模型技术从基础大模型走向行业大模型的机会和挑战。
多位金融领域的专家指出,大模型对整个金融体系的影响是长期的,但金融业对精准度、可控性、安全等都有很高的要求,而当下大模型仍无法解决幻觉问题——不准确或误导性的输出,影响了其应用落地。要解决这一点,应注重知识图谱技术与大模型技术的融合,并重视传统小模型的协同作用,不管是重底座、轻应用,还是重应用、轻底座,都是错误的。
▍大模型对金融体系将产生长期影响
相关研究数据显示,目前国内参数在10亿规模以上的大模型数量已有116个,其中金融行业大模型约18个。蚂蚁集团、度小满、恒生电子、同花顺等已经在积极研发金融大模型。
有业内分析认为,中国金融机构经历互联网、移动互联网两大浪潮之后,如今正迎接第三波大模型浪潮。
中国社科院国家金融与发展实验室副主任杨涛在会上表示,大模型对整个金融体系的影响是一个长期的过程,而短期内在某些方面已经体现了一些价值:
一是在提升面向客户的服务能力方面,可为金融机构员工的专业化营销、渠道维护提供更加智能化的间接支持。
二是在改善机构工作流程与效率方面,可进一步提升业务链条智能化与办公模式的自动化。
三是在文本处理方面,对金融机构的一般文本、专业合规文件及业务所需的信息,都能更低成本、高效地提供技术支持。
四是对金融机构实现了IT支持,其代码生成的功能提升了IT基础工作的效率。
平安集团首席科学家肖京介也分享了正在开展的大模型和AIGC实践。肖京介透露,平安集团有几十万业务员,每个业务员可以通过人工智能生成多个高清数字人,从而拥有自己的数字分身,提高营销能力。
在客户服务方面,平安集团的语音机器人去年总计服务了26亿次客户,约占客服业务的81%。在保险理赔方面,借助AI技术实现98.6%的案件一天内赔付。在风控领域,通过人脸和声音等身份识别技术来反欺诈,并对债券、投资或二级市场投资等领域可能出现的风险,借助智能系统进行防范和预警。
不过,大模型本身能力仍有很多地方待改进。
肖京介指出,不管是精准度、可控性、安全等很多地方需要不断进步。此外,在投产价值上,大模型的一大弊端是成本很高。“企业做任何工作都要考虑产出,不能只看投入。而生成式大模型虽然在业务场景中逐渐出现成效,但还没有呈现出规模化的效应。”
▍大模型、小模型互相协同
复旦大学教授、上海市数据科学重点实验室主任肖仰华提到,“大模型的出现颠覆了认知。让我们发现行业的很多问题恰恰是建立在通用的认知能力基础上。没有通识能力,是不可能发展出专业认知能力。”
但是,通用大模型的行业适配和优化的道路才刚刚开始。“大模型在金融领域的应用属于复杂决策任务,要比ChatGPT这一类开放闲聊的任务,困难得多。通用模型里面的专业知识是远远不够的。为此,大模型需要进行面向领域的训练优化,提升大模型的行业认知能力。” 肖仰华称。
其中,特别要注重大模型与知识图谱的协同。肖仰华认为,知识图谱擅长表达的是专业知识、私密知识,和可理解、可控的符号知识,这与大模型所表达的参数化、不可理解的知识是紧密的互补关系,可以缓解大模型的幻觉问题。
此外,企业还需从知识、能力、价值三方面重新架构自身系统。在这个过程当中,尤其要重视传统小模型的价值。“传统的分类模型、预测模型依然有用,我们真正要做的是把大模型、小模型协同起来。实际上小模型的插件应用,可显著地补足通用大模型能力的不足。重底座、轻应用和重应用、轻底座,都是在行业里使用大模型的错误。两者我们要兼顾,把大模型、小模型协同好。”
▍大模型就像“鹦鹉学舌” 数理能力有待提升
蚂蚁集团CTO何征宇在接受《科创板日报》记者采访时表示,AI大模型在语言文字上有较强的表现,但在数理逻辑上仍有差距。
何征宇把大模型比喻为一只大号的鹦鹉。“现在,大模型学习东西的过程,就像是鹦鹉学舌。人类不断重复告诉大模型1+1=2,通过一段时间地训练,它可以说人话、告诉你答案。但并不意味着真的理解了,特别在逻辑推断、数理分析方面,你想想一只鹦鹉怎么可能做好量化分析?”
蚂蚁集团副总裁、金融大模型负责人王晓航则在采访中坦言,金融对知识专业性、逻辑的严谨性,以及合规性都要求很高。原生大模型距离金融行业的要求还有很大的鸿沟,如何防止大模型出现幻觉,并没有很好的办法。
“为此,我们采用了知识图谱的结构化数据,与大模型参数化数据相结合双驱动方式。希望通过积累的大规模金融领域的知识图谱,能确保大模型的专业和严谨性。通过知识的注入、一致性的对齐,在生成完后,对真实和一致性进行判别,这是一个系统化的过程。”
王晓航认为,当下金融业还没有成熟到可以全面驾驭大模型所带来的机会。“这依赖金融科技公司,金融体系内部的科技力量,能够把技术转化成产品、转化成平台。我判断,这还需要大概1、2年的时间。”